Search results
Results from the WOW.Com Content Network
A regular decagon has all sides of equal length and each internal angle will always be equal to 144°. [1] Its Schläfli symbol is {10} [2] and can also be constructed as a truncated pentagon, t{5}, a quasiregular decagon alternating two types of edges.
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides; Pentadecagon – 15 sides; Hexadecagon – 16 sides; Heptadecagon – 17 sides; Octadecagon – 18 sides; Enneadecagon – 19 sides; Icosagon – 20 sides ...
Based on the construction of the regular 17-gon, one can readily construct n-gons with n being the product of 17 with 3 or 5 (or both) and any power of 2: a regular 51-gon, 85-gon or 255-gon and any regular n-gon with 2 h times as many sides.
A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is {16} and can be constructed as a truncated octagon, t{8}, and a twice-truncated square tt{4}. A truncated hexadecagon, t{16}, is a triacontadigon, {32}.
For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [5] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.