enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    A regular decagon has all sides of equal length and each internal angle will always be equal to 144°. [1] Its Schläfli symbol is {10} [2] and can also be constructed as a truncated pentagon, t{5}, a quasiregular decagon alternating two types of edges.

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.

  4. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides; Pentadecagon – 15 sides; Hexadecagon – 16 sides; Heptadecagon – 17 sides; Octadecagon – 18 sides; Enneadecagon – 19 sides; Icosagon – 20 sides ...

  5. Heptadecagon - Wikipedia

    en.wikipedia.org/wiki/Heptadecagon

    Based on the construction of the regular 17-gon, one can readily construct n-gons with n being the product of 17 with 3 or 5 (or both) and any power of 2: a regular 51-gon, 85-gon or 255-gon and any regular n-gon with 2 h times as many sides.

  6. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is {16} and can be constructed as a truncated octagon, t{8}, and a twice-truncated square tt{4}. A truncated hexadecagon, t{16}, is a triacontadigon, {32}.

  7. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    For a regular polygon with 10,000 sides (a myriagon) the internal angle is 179.964°. As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle.

  8. Tetradecagon - Wikipedia

    en.wikipedia.org/wiki/Tetradecagon

    Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [5] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.

  9. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.