Search results
Results from the WOW.Com Content Network
The ampacity of a conductor, that is, the amount of current it can carry, is related to its electrical resistance: a lower-resistance conductor can carry a larger value of current. The resistance, in turn, is determined by the material the conductor is made from (as described above) and the conductor's size.
[1] [2] [3] For example, if a 1 m 3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m. Electrical conductivity (or specific conductance) is the reciprocal of electrical resistivity. It represents a material's ability to conduct ...
The ridges are used to add surface area, which improves the electrical resistance of the insulator. Three-core copper wire power cable, each core with an individual colour-coded insulating sheath, all contained within an outer protective sheath. An electrical insulator is a material in which electric current does not flow freely. The atoms of ...
where is the length of the conductor, measured in metres (m), A is the cross-sectional area of the conductor measured in square metres (m 2), σ is the electrical conductivity measured in siemens per meter (S·m −1), and ρ is the electrical resistivity (also called specific electrical resistance) of the material, measured in ohm-metres (Ω ...
Pages in category "Electrical conductors" The following 13 pages are in this category, out of 13 total. This list may not reflect recent changes. ...
Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. [1] [2] The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor. [3] Copper is the electrical conductor in many categories of electrical wiring.
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
These ions are good conductors of electric current in the solution. Originally, a "strong electrolyte" was defined as a chemical compound that, when in aqueous solution, is a good conductor of electricity. With a greater understanding of the properties of ions in solution, its definition was replaced by the present one.