Search results
Results from the WOW.Com Content Network
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.
It starts from an assumption about a probabilistic distribution of the set of all possible inputs. This assumption is then used to design an efficient algorithm or to derive the complexity of a known algorithm. This approach is not the same as that of probabilistic algorithms, but the two may be combined.
Blum–Goldwasser is a probabilistic, semantically secure cryptosystem with a constant-size ciphertext expansion. The encryption algorithm implements an XOR-based stream cipher using the Blum-Blum-Shub (BBS) pseudo-random number generator to generate the keystream.
Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.
Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [19]Probabilistic numerics have also been studied for mathematical optimization, which consist of finding the minimum or maximum of some objective function given (possibly noisy or indirect) evaluations of that function at a set of points.
Freivalds' algorithm (named after Rūsiņš Mārtiņš Freivalds) is a probabilistic randomized algorithm used to verify matrix multiplication. Given three n × n matrices A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} , a general problem is to verify whether A × B = C {\displaystyle A\times B=C} .
Probabilistic algorithm = Randomised algorithm; Monte Carlo method; Las Vegas algorithm; Probabilistic Turing machine; Stochastic programming; Probabilistically checkable proof; Box–Muller transform; Metropolis algorithm; Gibbs sampling; Inverse transform sampling method; Walk-on-spheres method
Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), [1] are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates ...