enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Time-series of mel-frequency cepstrum coefficients. 8,800 Text Classification 2010 [124] [125] M. Bedda et al. ISOLET Dataset Spoken letter names. Features extracted from sounds. 7797 Text Classification 1994 [126] [127] R. Cole et al. Japanese Vowels Dataset Nine male speakers uttered two Japanese vowels successively.

  3. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Classification, Lifelong object recognition, Robotic Vision 2019 [43] Q. She et al. THz and thermal video data set This multispectral data set includes terahertz, thermal, visual, near infrared, and three-dimensional videos of objects hidden under people's clothes. 3D lookup tables are provided that allow you to project images onto 3D point clouds.

  5. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Panel data is the general class, a multidimensional data set, whereas a time series data set is a one-dimensional panel (as is a cross-sectional dataset). A data set may exhibit characteristics of both panel data and time series data. One way to tell is to ask what makes one data record unique from the other records.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Sample entropy - Wikipedia

    en.wikipedia.org/wiki/Sample_entropy

    Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...

  8. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    As an example, consider a dataset of birds for classification. The feature space for the minority class for which we want to oversample could be beak length, wingspan, and weight (all continuous). To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space).

  9. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    A decision tree is a simple representation for classifying examples. For this section, assume that all of the input features have finite discrete domains, and there is a single target feature called the "classification". Each element of the domain of the classification is called a class. A decision tree or a classification tree is a tree in ...