Search results
Results from the WOW.Com Content Network
Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the ...
In mathematics, a rigid collection C of mathematical objects (for instance sets or functions) is one in which every c ∈ C is uniquely determined by less information about c than one would expect. The above statement does not define a mathematical property ; instead, it describes in what sense the adjective "rigid" is typically used in ...
The information in this section can be found in. [1] The rigidity matrix can be viewed as a linear transformation from | | to | |.The domain of this transformation is the set of | | column vectors, called velocity or displacements vectors, denoted by ′, and the image is the set of | | edge distortion vectors, denoted by ′.
A common example of a screw is the wrench associated with a force acting on a rigid body ... into this equation to obtain, = ... In transformation geometry, ...
In mechanics, the dual quaternions are applied as a number system to represent rigid transformations in three dimensions. [1] Since the space of dual quaternions is 8-dimensional and a rigid transformation has six real degrees of freedom, three for translations and three for rotations, dual quaternions obeying two algebraic constraints are used ...
Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning ...
These transformations can cause the displacement of the triangle in the plane, while leaving the vertex angle and the distances between vertices unchanged. Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry.
The constraint equations for a kinematic chain are obtained using rigid transformations [Z] to characterize the relative movement allowed at each joint and separate rigid transformations [X] to define the dimensions of each link. In the case of a serial open chain, the result is a sequence of rigid transformations alternating joint and link ...