Search results
Results from the WOW.Com Content Network
The electrode is immersed in the acidic solution and pure hydrogen gas is bubbled over its surface. The concentration of both the reduced and oxidised forms of hydrogen are maintained at unity. That implies that the pressure of hydrogen gas is 1 bar (100 kPa) and the activity coefficient of hydrogen ions in the solution is unity.
Unlike the standard hydrogen electrode, its measured potential does change with the pH, so it can be directly used in the electrolyte. [1] [2] [3] The name refers to the fact that the electrode is directly immersed in the actual electrolyte solution and not separated by a salt bridge. The hydrogen ion concentration is therefore not 1 mol/L, or ...
A capillary-fed electrolyzer cell is claimed to require only 41.5 kWh to produce 1 kg of hydrogen. The water electrolyte is isolated from the electrodes by a porous, hydrophilic separator. The water is drawn into the electrolyzer by capillary action, while the electrolyzed gases pass out on either side.
The decomposition of water into hydrogen and oxygen can be performed in an electrolytic cell. In it, a pair of inert electrodes usually made of platinum immersed in water act as anode and cathode in the electrolytic process. The electrolysis starts with the application of an external voltage between the electrodes.
When water is submitted to electrolysis by applying a sufficient difference of electrical potential between two electrodes immersed in water, hydrogen is produced at the cathode (reduction of water protons) while oxygen is formed at the anode (oxidation of water oxygen atoms).
As already noted, water, particularly when ions are added (saltwater or acidic water), can be electrolyzed (subjected to electrolysis). When driven by an external source of voltage, hydrogen (H +) ions flow to the cathode to combine with electrons to produce hydrogen gas in a reduction reaction. Likewise, hydroxide (OH −
The Virtual breakdown mechanism is a concept in the field of electrochemistry.In electrochemical reactions, when the cathode and the anode are close enough to each other (i.e., so-called "nanogap electrochemical cells"), the double layer of the regions from the two electrodes is overlapped, forming a large electric field uniformly distributed inside the entire electrode gap.
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...