Search results
Results from the WOW.Com Content Network
Pascalization, bridgmanization, high pressure processing (HPP) [1] or high hydrostatic pressure (HHP) processing [2] is a method of preserving and sterilizing food, in which a product is processed under very high pressure, leading to the inactivation of certain microorganisms and enzymes in the food. [3]
Urea plant using ammonium carbamate briquettes, Fixed Nitrogen Research Laboratory, ca. 1930 Carl Bosch, 1927. The Bosch–Meiser process is an industrial process, which was patented in 1922 [1] and named after its discoverers, the German chemists Carl Bosch and Wilhelm Meiser [2] for the large-scale manufacturing of urea, a valuable nitrogenous chemical.
High-pressure chemistry is concerned with those chemical processes that are carried out under high pressure – pressures in the thousands of bars (100 kPa) or higher. High-pressure processes are generally faster and have a higher conversion efficiency than processes at ambient pressure.
Carl Bosch (German pronunciation: [kaʁl ˈbɔʃ] ⓘ; 27 August 1874 – 26 April 1940) was a German chemist and engineer and Nobel Laureate in Chemistry. [2] He was a pioneer in the field of high-pressure industrial chemistry and founder of IG Farben, at one point the world's largest chemical company.
Fritz Haber (German: [ˈfʁɪt͡s ˈhaːbɐ] ⓘ; 9 December 1868 – 29 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen gas.
The Bergius process is a method of production of liquid hydrocarbons for use as synthetic fuel by hydrogenation of high-volatile bituminous coal at high temperature and pressure. It was first developed by Friedrich Bergius in 1913. In 1931 Bergius was awarded the Nobel Prize in Chemistry for his development of high-pressure chemistry. [1]
Food physical chemistry is considered to be a branch of Food chemistry [1] [2] concerned with the study of both physical and chemical interactions in foods in terms of physical and chemical principles applied to food systems, as well as the applications of physical/chemical techniques and instrumentation for the study of foods.
The history of the Haber process begins with the invention of the Haber process at the dawn of the twentieth century. The process allows the economical fixation of atmospheric dinitrogen in the form of ammonia, which in turn allows for the industrial synthesis of various explosives and nitrogen fertilizers, and is probably the most important industrial process developed during the twentieth ...