Search results
Results from the WOW.Com Content Network
[1] [2] In physical and analytical chemistry, infrared spectroscopy (IR spectroscopy) is a technique used to identify chemical compounds based on the way infrared radiation is absorbed by the compound. The absorptions in this range do not apply only to bonds in organic molecules.
In chemistry, the carbon–hydrogen bond (C−H bond) is a chemical bond between carbon and hydrogen atoms that can be found in many organic compounds. [1] This bond is a covalent , single bond , meaning that carbon shares its outer valence electrons with up to four hydrogens.
IRPD spectroscopy has been shown to use electron ionization, corona discharge, and electrospray ionization to obtain spectra of volatile and nonvolatile compounds. [2] [3] Ionized gases trapped in a mass spectrometer can be studied without the need of a solvent as in infrared spectroscopy. [4] Schematic diagram of infrared photodissociation ...
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify ...
In IR spectroscopy, hexachlorobutadiene is occasionally used as a mull in order to analyze the stretching frequencies of C-H stretching bands. The usual mulling agent, Nujol, is a hydrocarbon and thus exhibits C-H stretching bands that can interfere with the signal from the sample. Since HCBD contains no C-H bonds, it can be used instead to ...
Infrared spectroscopy: the C=O double bond absorbs infrared light at wavenumbers between approximately 1600–1900 cm −1 (5263 nm to 6250 nm). The exact location of the absorption is well understood with respect to the geometry of the molecule. This absorption is known as the "carbonyl stretch" when displayed on an infrared absorption ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.