Search results
Results from the WOW.Com Content Network
The second reaction is oxidation of nitrite (NO − 2) to nitrate by nitrite-oxidizing bacteria (NOB), represented by the members of Nitrospinota, Nitrospirota, Pseudomonadota, and Chloroflexota. [5] [6] This two-step process was described already in 1890 by the Ukrainian microbiologist Sergei Winogradsky.
Nitrite oxidoreductase (NOR or NXR) is an enzyme involved in nitrification.It is the last step in the process of aerobic ammonia oxidation, which is carried out by two groups of nitrifying bacteria: ammonia oxidizers such as Nitrosospira, Nitrosomonas, and Nitrosococcus convert ammonia to nitrite, while nitrite oxidizers such as Nitrobacter and Nitrospira oxidize nitrite to nitrate.
The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is usually the rate limiting step of nitrification. Nitrification is an aerobic process performed by small groups of autotrophic bacteria and archaea.
Oral antiseptic mouthwash has been shown to eliminate the blood pressure lowering effects of dietary nitrate due to eradication of nitrate-reducing bacteria. [ 18 ] A related mechanism is thought to protect the skin from fungal infections, where nitrate in sweat is reduced to nitrite by skin commensal organisms and then to NO on the slightly ...
Aerobic denitrification, or co-respiration, the simultaneous use of both oxygen (O 2) and nitrate (NO − 3) as oxidizing agents, performed by various genera of microorganisms. [1] This process differs from anaerobic denitrification not only in its insensitivity to the presence of oxygen, but also in its higher potential to form nitrous oxide ...
The conversion of nitrite to nitrate is facilitated by nitrite-oxidizing bacteria. The genus Nitrobacter is widely distributed in both aquatic and terrestrial environments. [ 2 ] Nitrifying bacteria have an optimum growth between 77 and 86 °F (25 and 30 °C), and cannot survive past the upper limit of 120 °F (49 °C) or the lower limit of 32 ...
Nitrobacter winogradskyi is a gram-negative nitrite-oxidizing bacteria from the genus of Nitrobacter. [2] [3] It is a chemolithoautotroph that derives energy by oxidation of nitrite. Nitrobacter winogradskyi is rod-shaped and is involved in the biological nitrification process that occurs within the nitrogen cycle.
The first step is the partial nitrification (nitritation) of half of the ammonium to nitrite by ammonia oxidizing bacteria: 2 NH + 4 + 3 O 2 → 2 NO − 2 + 4 H + + 2 H 2 O. The remaining half of the ammonium and the newly formed nitrite are converted in the anammox process to diatomic nitrogen gas and ~15 % nitrate (not shown) by anammox ...