Search results
Results from the WOW.Com Content Network
In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: Positive-definite bilinear form; Positive-definite function; Positive-definite function on a group; Positive-definite functional; Positive-definite kernel
Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.
Hilbert (1894) introduced the Hilbert matrix to study the following question in approximation theory: "Assume that I = [a, b], is a real interval.Is it then possible to find a non-zero polynomial P with integer coefficients, such that the integral
In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues ...
Thus, to proceed with the appropriate analysis, it suffices to bound the function of interest with continuous nonincreasing positive definite functions. In other words, when a function belongs to the ( K ∞ {\displaystyle {\mathcal {K}}_{\infty }} ) it means that the function is radially unbounded.
The number v (resp. p) is the maximal dimension of a vector subspace on which the scalar product g is positive-definite (resp. negative-definite), and r is the dimension of the radical of the scalar product g or the null subspace of symmetric matrix g ab of the scalar product. Thus a nondegenerate scalar product has signature (v, p, 0), with v ...
Questions and Answers. Call Participants. Prepared Remarks: Operator. Good morning, ladies and gentlemen, and welcome to the Alaska Air Group 2024 fourth quarter earnings call. [Operator ...
Quadratic programming is particularly simple when Q is positive definite and there are only equality constraints; specifically, the solution process is linear. By using Lagrange multipliers and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem