enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    As another example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any g divides for instance 2 g , which is distinct from it, so g is not maximal.

  3. Fence (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fence_(mathematics)

    An up-down poset Q(a,b) is a generalization of a zigzag poset in which there are a downward orientations for every upward one and b total elements. [5] For instance, Q(2,9) has the elements and relations > > < > > < > >. In this notation, a fence is a partially ordered set of the form Q(1,n).

  4. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A non-empty subset X of a poset P is called directed, if, for all elements x and y of X, there is an element z of X such that x ≤ z and y ≤ z. The dual notion is called filtered. Directed complete partial order. A poset D is said to be a directed complete poset, or dcpo, if every directed subset of D has a supremum. Distributive.

  5. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    A nontrivial poset satisfying the descending chain condition is said to have deviation 0. Then, inductively, a poset is said to have deviation at most α (for an ordinal α) if for every descending chain of elements a 0 > a 1 >... all but a finite number of the posets of elements between a n and a n+1 have deviation less than α. The deviation ...

  6. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair ( x , y ) of P , y < i x for some order < i in R .

  7. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    If both exist, the poset is called a bounded poset. The notation of 0 and 1 is used preferably when the poset is a complemented lattice , and when no confusion is likely, i.e. when one is not talking about partial orders of numbers that already contain elements 0 and 1 different from bottom and top.

  8. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties: The rank function is compatible with the ordering, meaning that for all x and y in the order, if x < y then ρ(x) < ρ(y), and

  9. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.