enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Consequently when a body is moving relative to a gas, the drag coefficient varies with the Mach number and the Reynolds number. The analysis also gives other information for free, so to speak. The analysis shows that, other things being equal, the drag force will be proportional to the density of the fluid.

  3. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity, the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [7]) is given by:

  4. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [22] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized .

  5. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  6. Added mass - Wikipedia

    en.wikipedia.org/wiki/Added_mass

    For ships, the added mass can easily reach one fourth or one third of the mass of the ship and therefore represents a significant inertia, in addition to frictional and wavemaking drag forces. For certain geometries freely sinking through a column of water, hydrodynamic added mass associated with the sinking body can be much larger than the ...

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The energy entering through A 1 is the sum of the kinetic energy entering, the energy entering in the form of potential gravitational energy of the fluid, the fluid thermodynamic internal energy per unit of mass (ε 1) entering, and the energy entering in the form of mechanical p dV work: = (+ + +) where Ψ = gz is a force potential due to the ...

  8. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    Terminal velocity is achieved when the drag force is equal in magnitude but opposite in direction to the force propelling the object. Shown is a sphere in Stokes flow, at very low Reynolds number . Stokes flow (named after George Gabriel Stokes ), also named creeping flow or creeping motion , [ 1 ] is a type of fluid flow where advective ...

  9. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    There are two causes of aerodynamic force: [1]: §4.10 [2] [3]: 29 the normal force due to the pressure on the surface of the body; the shear force due to the viscosity of the gas, also known as skin friction. Pressure acts normal to the surface, and shear force acts parallel to the surface. Both forces act locally.