Search results
Results from the WOW.Com Content Network
Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation. Fick's first law: Movement of particles from high to low concentration (diffusive flux) is directly proportional to the particle's concentration gradient. [1] Fick's second law: Prediction of change in concentration gradient with time due ...
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1] General Transport equation can be defined as
The Boltzmann–Matano method is used to convert the partial differential equation resulting from Fick's law of diffusion into a more easily solved ordinary differential equation, which can then be applied to calculate the diffusion coefficient as a function of concentration.
The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation. As an example, consider a rod of length L {\displaystyle L} that is being heated from an initial temperature T 0 {\displaystyle T_{0}} by imposing a heat source of temperature T L > T 0 {\displaystyle T_{L}>T_{0}} at time t = 0 {\displaystyle t=0 ...
Fick’s second law is: / = / Where C is the concentration of the element in question, t is time, D is the diffusion coefficient, and x is distance. A common analytical solution to Fick’s second law that is used in diffusion chronometry is: [6] [7]
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces. [1] [2] It is named after Walther Nernst and Max Planck.