Search results
Results from the WOW.Com Content Network
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
A function graph with lines tangent to the minimum and maximum. Fermat's theorem guarantees that the slope of these lines will always be zero. In mathematics, Fermat's theorem (also known as interior extremum theorem) is a theorem which states that at the local extrema of a differentiable function, its derivative is always zero.
The mean value theorem proves that this must be true: The slope between any two points on the graph of f must equal the slope of one of the tangent lines of f. All of those slopes are zero, so any line from one point on the graph to another point will also have slope zero.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent. It is a special case of the slope, where zero indicates horizontality. A ...
Calculus can be used in conjunction with other mathematical disciplines. For example, it can be used with linear algebra to find the "best fit" linear approximation for a set of points in a domain. Or, it can be used in probability theory to determine the expectation value of a continuous random variable given a probability density function.
It can be expressed by numerous definitions, for example "0 for negative inputs, output equals input for non-negative inputs". The term "ramp" can also be used for other functions obtained by scaling and shifting , and the function in this article is the unit ramp function (slope 1, starting at 0).
A linear function () = + has a constant rate of change equal to its slope a, so its derivative is the constant function ′ =. The fundamental idea of differential calculus is that any smooth function f ( x ) {\displaystyle f(x)} (not necessarily linear) can be closely approximated near a given point x = c {\displaystyle x=c} by a unique linear ...