Search results
Results from the WOW.Com Content Network
A very simple mechanism of acoustic amplification was first identified by Lord Rayleigh in 1878. [4] [5] In simple terms, Rayleigh criterion states that amplification results if, on the average, heat addition occurs in phase with the pressure increases during the oscillation. [1].
Geometrical acoustics is an approximate theory, valid in the limiting case of very small wavelengths, or very high frequencies. The principal task of geometrical acoustics is to determine the trajectories of sound rays. The rays have the simplest form in a homogeneous medium, where they are straight lines. If the acoustic parameters of the ...
In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh (/ ˈ r eɪ l i /). [1]
Rayleigh-type λ −4 scattering can also be exhibited by porous materials. An example is the strong optical scattering by nanoporous materials. [ 23 ] The strong contrast in refractive index between pores and solid parts of sintered alumina results in very strong scattering, with light completely changing direction each five micrometers on ...
In optics, Rayleigh proposed a well-known criterion for angular resolution. His derivation of the Rayleigh–Jeans law for classical black-body radiation later played an important role in the birth of quantum mechanics (see ultraviolet catastrophe). Rayleigh's textbook The Theory of Sound (1877) is still used today by acousticians and
Acoustic theory is a scientific field that relates to the description of sound waves.It derives from fluid dynamics.See acoustics for the engineering approach.. For sound waves of any magnitude of a disturbance in velocity, pressure, and density we have
The Keller–Miksis equation takes into account the viscosity, surface tension, incident sound wave, and acoustic radiation coming from the bubble, which was previously unaccounted for in Lauterborn's calculations. Lauterborn solved the equation that Plesset, et al. modified from Rayleigh's original analysis of large oscillating bubbles. [6]
File:Rayleigh, John William Strutt – Theory of sound, 1894 – BEIC 6738003.jpg. Add languages. ... Theory of sound Author: John William Strutt Rayleigh. Title: