Search results
Results from the WOW.Com Content Network
The normal family of distributions all have the same general shape and are parameterized by mean and standard deviation.That means that if the mean and standard deviation are known and if the distribution is normal, the probability of any future observation lying in a given range is known.
A "parameter" is to a population as a "statistic" is to a sample; that is to say, a parameter describes the true value calculated from the full population (such as the population mean), whereas a statistic is an estimated measurement of the parameter based on a sample (such as the sample mean, which is the mean of gathered data per sampling ...
The design effect is a positive real number that indicates an inflation (>), or deflation (<) in the variance of an estimator for some parameter, that is due to the study not using SRS (with =, when the variances are identical).
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).
Parametric models are contrasted with the semi-parametric, semi-nonparametric, and non-parametric models, all of which consist of an infinite set of "parameters" for description. The distinction between these four classes is as follows: [citation needed] in a "parametric" model all the parameters are in finite-dimensional parameter spaces;
In the design of experiments for estimating statistical models, optimal designs allow parameters to be estimated without bias and with minimum variance. A non-optimal design requires a greater number of experimental runs to estimate the parameters with the same precision as an optimal design.
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.
Although formally is a single parameter that has dimension k, it is sometimes regarded as comprising k separate parameters. For example, with the univariate Gaussian distribution, θ {\displaystyle \theta } is formally a single parameter with dimension 2, but it is often regarded as comprising 2 separate parameters—the mean and the standard ...