Search results
Results from the WOW.Com Content Network
Sodium ferrocyanide is produced industrially from hydrogen cyanide, ferrous chloride, and calcium hydroxide, the combination of which affords Ca 2 [Fe(CN) 6]·11H 2 O.A solution of this salt is then treated with sodium salts to precipitate the mixed calcium-sodium salt CaNa 2 [Fe(CN) 6] 2, which in turn is treated with sodium carbonate to give the tetrasodium salt.
Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−. In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand. On the other hand, 18-electron ...
A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms. [12]
However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2, written as [Ar] 3d 4 4s 2, but whose actual configuration given in the table below is [Ar] 3d 5 4s 1.
This rule predicts for example that the 4s orbital (n = 4, l = 0, n + l = 4) is filled before the 3d orbital (n = 3, l = 2, n + l = 5), as in titanium with configuration [Ar]4s 2 3d 2. There are a few exceptions with only one electron (or zero for palladium ) in the n s orbital in favor of completing a half or a whole d shell.
A spectrochemical series is a list of ligands ordered by ligand "strength", and a list of metal ions based on oxidation number, group and element.For a metal ion, the ligands modify the difference in energy Δ between the d orbitals, called the ligand-field splitting parameter in ligand field theory, or the crystal-field splitting parameter in crystal field theory.
Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.
Chromium and copper have electron configurations [Ar] 3d 5 4s 1 and [Ar] 3d 10 4s 1 respectively, i.e. one electron has passed from the 4s-orbital to a 3d-orbital to generate a half-filled or filled subshell. In this case, the usual explanation is that "half-filled or completely filled subshells are particularly stable arrangements of electrons".