enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Buoyancy - Wikipedia

    en.wikipedia.org/wiki/Buoyancy

    Buoyancy also applies to fluid mixtures, and is the most common driving force of convection currents. In these cases, the mathematical modelling is altered to apply to continua, but the principles remain the same. Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water.

  3. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    The magnitude of buoyancy force may be appreciated a bit more from the following argument. Consider any object of arbitrary shape and volume V surrounded by a liquid. The force the liquid exerts on an object within the liquid is equal to the weight of the liquid with a volume equal to that of the object. This force is applied in a direction ...

  4. Plume (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Plume_(fluid_dynamics)

    "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise. Situations where the density of the plume fluid is greater than its surroundings (i.e. in still conditions, its natural tendency would be to sink), but the flow has sufficient initial momentum to carry it some ...

  5. Cartesian diver - Wikipedia

    en.wikipedia.org/wiki/Cartesian_diver

    A Cartesian diver or Cartesian devil is a classic science experiment which demonstrates the principle of buoyancy (Archimedes' principle) and the ideal gas law.The first written description of this device is provided by Raffaello Magiotti, in his book Renitenza certissima dell'acqua alla compressione (Very firm resistance of water to compression) published in 1648.

  6. Stable and unstable stratification - Wikipedia

    en.wikipedia.org/wiki/Stable_and_unstable...

    In unstable stratification, on the other hand, buoyancy forces cause convection. The less-dense layers rise though the denser layers above, and the denser layers sink though the less-dense layers below. Stratifications can become more or less stable if layers change density. The processes involved are important in many science and engineering ...

  7. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    Aerostatic lift or buoyancy, in which an internal fluid is lighter than the surrounding fluid, does not require movement and is used by balloons, blimps, dirigibles, boats, and submarines. Planing lift, in which only the lower portion of the body is immersed in a liquid flow, is used by motorboats, surfboards, windsurfers, sailboats, and water ...

  8. Oceanic physical-biological process - Wikipedia

    en.wikipedia.org/wiki/Oceanic_physical...

    Water forms the ocean, produces the high density fluid environment and greatly affects the oceanic organisms. Sea water produces buoyancy and provides support for plants and animals. That's the reason why in the ocean organisms can be that huge like the blue whale and macrophytes. And the densities or rigidities of the oceanic organisms are ...

  9. Geophysical fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Geophysical_fluid_dynamics

    Depending on the main sources of buoyancy, this layer may be called a pycnocline (density), thermocline (temperature), halocline (salinity), or chemocline (chemistry, including oxygenation). The same buoyancy that gives rise to stratification also drives gravity waves. If the gravity waves occur within the fluid, they are called internal waves.