Search results
Results from the WOW.Com Content Network
Due to the polar nature of the water molecule itself, other polar molecules are generally able to dissolve in water. Most nonpolar molecules are water-insoluble ( hydrophobic ) at room temperature. Many nonpolar organic solvents , such as turpentine , are able to dissolve nonpolar substances.
Charged and polar side chains are situated on the solvent-exposed surface where they interact with surrounding water molecules. Minimizing the number of hydrophobic side chains exposed to water is the principal driving force behind the folding process, [ 8 ] [ 9 ] [ 10 ] although formation of hydrogen bonds within the protein also stabilizes ...
Because water molecules are polar, hydrophobes do not dissolve well among them. Hydrophobic molecules in water often cluster together, forming micelles. Water on hydrophobic surfaces will exhibit a high contact angle. Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances in general.
The polarity, dipole moment, polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible. Generally, polar solvents dissolve polar compounds best and non-polar solvents dissolve non-polar compounds best; hence "like dissolves like".
The principle outlined above under polarity, that like dissolves like, is the usual guide to solubility with organic systems. For example, petroleum jelly will dissolve in gasoline because both petroleum jelly and gasoline are non-polar hydrocarbons.
This arises from the fact that polar solvents stabilize the formation of the carbocation intermediate to a greater extent than the non-polar-solvent conditions. This is apparent in the ΔE a, ΔΔG ‡ activation. On the right is an S N 2 reaction coordinate diagram. Note the decreased ΔG ‡ activation for the non-polar-solvent reaction ...
The polar bear alert team's vehicles are gathering outside, trying to move a bear away from town. "If climate change continues," muses Tee's classmate Charlie, "the polar bears might just stop ...
On the other hand, non-polar solutes dissolve better in non-polar solvents. Examples are hydrocarbons such as oil and grease that easily mix, while being incompatible with water. An example of the immiscibility of oil and water is a leak of petroleum from a damaged tanker, that does not dissolve in the ocean water but rather floats on the surface.