enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glucose uptake - Wikipedia

    en.wikipedia.org/wiki/Glucose_uptake

    Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...

  3. Cotransporter - Wikipedia

    en.wikipedia.org/wiki/Cotransporter

    His experience in the areas of glucose-6-phosphate biochemistry, carbon dioxide fixation, hexokinase and phosphate studies led him to hypothesize cotransport of glucose along with sodium through the intestine. Pictured right is of Dr. Crane and his drawing of the cotransporter system he proposed in 1960, at the international meet on membrane ...

  4. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Nearly all organisms that break down glucose utilize glycolysis. [2] Glucose regulation and product use are the primary categories in which these pathways differ between organisms. [2] In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1]

  5. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    Active transport is usually associated with accumulating high concentrations of molecules that the cell needs, such as ions, glucose and amino acids. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into root hair cells of plants. [1]

  6. Sodium-glucose transport proteins - Wikipedia

    en.wikipedia.org/wiki/Sodium-glucose_transport...

    They contribute to renal glucose reabsorption. In the kidneys, 100% of the filtered glucose in the glomerulus has to be reabsorbed along the nephron (98% in PCT, via SGLT2). If the plasma glucose concentration is too high (hyperglycemia), glucose passes into the urine because SGLT are saturated with the filtered glucose.

  7. Paracellular transport - Wikipedia

    en.wikipedia.org/wiki/Paracellular_transport

    Paracellular transport also has the benefit that absorption rate is matched to load because it has no transporters that can be saturated. In most mammals, intestinal absorption of nutrients is thought to be dominated by transcellular transport, e.g., glucose is primarily absorbed via the SGLT1 transporter and other glucose transporters.

  8. Glucose transporter - Wikipedia

    en.wikipedia.org/wiki/Glucose_transporter

    It is responsible for the low level of basal glucose uptake required to sustain respiration in all cells. Levels in cell membranes are increased by reduced glucose levels and decreased by increased glucose levels. GLUT1 expression is upregulated in many tumors. GLUT2: Is a bidirectional transporter, allowing glucose to flow in 2 directions.

  9. Renal glucose reabsorption - Wikipedia

    en.wikipedia.org/wiki/Renal_glucose_reabsorption

    Renal glucose reabsorption is the part of kidney (renal) physiology that deals with the retrieval of filtered glucose, preventing it from disappearing from the body through the urine. If glucose is not reabsorbed by the kidney, it appears in the urine, in a condition known as glycosuria. This is associated with diabetes mellitus. [1]