enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    The generating function of the Bernoulli polynomials is given by: = = ()! These polynomials are given in terms of the Hurwitz zeta function: (,) = = (+)by (,) = for .Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]

  3. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...

  4. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)

  5. Master theorem - Wikipedia

    en.wikipedia.org/wiki/Master_theorem

    Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and linear algebra; Glasser's master theorem in integral calculus

  6. Akra–Bazzi method - Wikipedia

    en.wikipedia.org/wiki/Akra–Bazzi_method

    In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.

  7. Master equation - Wikipedia

    en.wikipedia.org/wiki/Master_equation

    A quantum master equation is a generalization of the idea of a master equation. Rather than just a system of differential equations for a set of probabilities (which only constitutes the diagonal elements of a density matrix ), quantum master equations are differential equations for the entire density matrix, including off-diagonal elements.

  8. MacMahon's master theorem - Wikipedia

    en.wikipedia.org/wiki/MacMahon's_Master_theorem

    In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916).

  9. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.