Search results
Results from the WOW.Com Content Network
Player Cut took 3 turns (dotted edges), player Short took 4 turns (green edges). The game is played on a finite graph with two special nodes, A and B. Each edge of the graph can be either colored or removed. The two players are called Short and Cut, and alternate moves. On Cut's turn, Cut deletes from the graph a non-colored edge of their choice.
A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated digon, t{2} is a square, {4}. An alternated digon, h{2} is a ...
A unit distance graph with 16 vertices and 40 edges. In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one.
Thus two vertices may be connected by more than one edge. There are 2 distinct notions of multiple edges: Edges without own identity: The identity of an edge is defined solely by the two nodes it connects. In this case, the term "multiple edges" means that the same edge can occur several times between these two nodes. Edges with own identity ...
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
The edge-connectivity λ(G) is the size of a smallest edge cut, and the local edge-connectivity λ(u, v) of two vertices u, v is the size of a smallest edge cut disconnecting u from v. Again, local edge-connectivity is symmetric. A graph is called k-edge-connected if its edge connectivity is k or greater.
Each vertex of this graph represents a square of the chessboard, and each edge connects two squares that are a knight's move apart from each other. More specifically, an m × n {\displaystyle m\times n} knight's graph is a knight's graph of an m × n {\displaystyle m\times n} chessboard. [ 1 ]
The edges identify the shortest possible paths (sets of transpositions) that connect two vertices (permutations). Two permutations connected by an edge differ in only two places (one transposition), and the numbers on these places are neighbors (differ in value by 1). The image on the right shows the permutohedron of order 4, which is the ...