Search results
Results from the WOW.Com Content Network
This is because the n-dimensional dV element is in general a parallelepiped in the new coordinate system, and the n-volume of a parallelepiped is the determinant of its edge vectors. The Jacobian can also be used to determine the stability of equilibria for systems of differential equations by approximating behavior near an equilibrium point.
Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….
Schematic illustration of idealized fiber arrays and their corresponding unit cells. In the theory of composite materials, the representative elementary volume (REV) (also called the representative volume element (RVE) or the unit cell) is the smallest volume over which a measurement can be made that will yield a value representative of the whole. [1]
The moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2).
The other units of length and mass, and all units of area, volume, and derived units such as density were derived from these two base units. Mesures usuelles ( French for customary measures ) were a system of measurement introduced as a compromise between the metric system and traditional measurements.
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
Also, the output of a linear system can contain harmonics (and have a smaller fundamental frequency than the input) even when the input is a sinusoid. For example, consider a system described by () = (+ ()) (). It is linear because it satisfies the superposition principle.
A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5] A linear system may behave in any one of three possible ways: The system has infinitely many solutions.