Search results
Results from the WOW.Com Content Network
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.
Inequation. Mathematical statement that two values are not equal. In mathematics, an inequation is a statement that an inequality holds between two values. [1][2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.
Sides of an equation. In mathematics, LHS is informal shorthand for the left-hand side of an equation. Similarly, RHS is the right-hand side. The two sides have the same value, expressed differently, since equality is symmetric. [1]
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
1. Strict inequality between two numbers; means and is read as "less than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2.
For greater values of the inequality does not hold, and the strict lower bound is with … (sequence A245330 in the OEIS). The initial proofs of the inequality in the pivotal cases n = 12 {\displaystyle n=12} [ 2 ] and n = 23 {\displaystyle n=23} [ 3 ] rely on numerical computations.
Bernoulli's inequality. An illustration of Bernoulli's inequality, with the graphs of and shown in red and blue respectively. Here, In mathematics, Bernoulli's inequality (named after Jacob Bernoulli) is an inequality that approximates exponentiations of . It is often employed in real analysis. It has several useful variants: [1]