enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3]

  3. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence defines a series S that is denoted. The n th partial sum Sn is the sum of the first n terms of the sequence; that is, A series is convergent (or converges) if and only if the sequence of its partial sums tends to a limit ...

  4. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    exists there are three possibilities: if L > 1 the series converges (this includes the case L = ∞) if L < 1 the series diverges. and if L = 1 the test is inconclusive. An alternative formulation of this test is as follows. Let { an } be a series of real numbers. Then if b > 1 and K (a natural number) exist such that.

  5. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    v. t. e. In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. In the most common applications, a sequence that converges to is said to have order of convergence and rate of convergence if. [1][2]

  6. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]

  7. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In this example, the ratio of adjacent terms in the blue sequence converges to L=1/2. We choose r = (L+1)/2 = 3/4. Then the blue sequence is dominated by the red sequence r k for all n2. The red sequence converges, so the blue sequence does as well. Below is a proof of the validity of the generalized ratio test.

  8. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...

  9. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [10] One such sequence would be {x 0 + 1/n}.