enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    Neptune is the eighth and farthest known planet from the Sun. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth. Compared to its fellow ice giant Uranus, Neptune is slightly more massive, but denser and smaller.

  4. Orbital resonance - Wikipedia

    en.wikipedia.org/wiki/Orbital_resonance

    Neptune's innermost moon, Naiad, is in a 73:69 fourth-order resonance with the next outward moon, Thalassa. As it orbits Neptune, the more inclined Naiad successively passes Thalassa twice from above and then twice from below, in a cycle that repeats every ~21.5 Earth days. The two moons are about 3540 km apart when they pass each other.

  5. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period (astronomy) In astronomy, the rotation period or spin period[1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background ...

  6. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus. Venus's axial tilt is 177°, which means it is rotating almost exactly in the opposite direction to its orbit. Uranus has an axial tilt of 97.77°, so its axis of rotation is approximately ...

  7. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    The stability of the Solar System is a subject of much inquiry in astronomy. Though the planets have historically been stable as observed, and will be in the "short" term, their weak gravitational effects on one another can add up in ways that are not predictable by any simple means. For this reason (among others), the Solar System is chaotic ...

  8. Outline of Neptune - Wikipedia

    en.wikipedia.org/wiki/Outline_of_Neptune

    The following outline is provided as an overview of and topical guide to Neptune: Neptune – eighth and farthest known planet from the Sun in the Solar System. In the Solar System, it is the fourth-largest planet by diameter, the third-most-massive planet, and the densest giant planet. Neptune is 17 times the mass of Earth and is slightly more ...

  9. Exoplanet orbital and physical parameters - Wikipedia

    en.wikipedia.org/wiki/Exoplanet_orbital_and...

    The eccentricity of an orbit is a measure of how elliptical (elongated) it is. All the planets of the Solar System except for Mercury have near-circular orbits (e<0.1). [8] Most exoplanets with orbital periods of 20 days or less have near-circular orbits, i.e. very low eccentricity.