enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    [1]: 226 Since this function is generally difficult to compute exactly, and the running time for small inputs is usually not consequential, one commonly focuses on the behavior of the complexity when the input size increases—that is, the asymptotic behavior of the complexity. Therefore, the time complexity is commonly expressed using big O ...

  3. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    This includes the memory space used by its inputs, called input space, and any other (auxiliary) memory it uses during execution, which is called auxiliary space. Similar to time complexity, space complexity is often expressed asymptotically in big O notation, such as (), (⁡), (), (), etc., where n is a characteristic of the input influencing ...

  4. Computational complexity theory - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The beginning of systematic studies in computational complexity is attributed to the seminal 1965 paper "On the Computational Complexity of Algorithms" by Juris Hartmanis and Richard E. Stearns, which laid out the definitions of time complexity and space complexity, and proved the hierarchy theorems. [20]

  5. Complexity class - Wikipedia

    en.wikipedia.org/wiki/Complexity_class

    In particular, most complexity classes consist of decision problems that can be solved by a Turing machine with bounded time or space resources. For example, the complexity class P is defined as the set of decision problems that can be solved by a deterministic Turing machine in polynomial time.

  6. Best, worst and average case - Wikipedia

    en.wikipedia.org/wiki/Best,_worst_and_average_case

    Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements. The run time grows to O(nlog(n)) if all elements must be distinct.

  7. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  8. PSPACE-complete - Wikipedia

    en.wikipedia.org/wiki/PSPACE-complete

    In computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time.

  9. Complexity - Wikipedia

    en.wikipedia.org/wiki/Complexity

    The most popular types of computational complexity are the time complexity of a problem equal to the number of steps that it takes to solve an instance of the problem as a function of the size of the input (usually measured in bits), using the most efficient algorithm, and the space complexity of a problem equal to the volume of the memory used ...