Search results
Results from the WOW.Com Content Network
In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.
The flow hydrant is fitted with a diffuser device containing a pitot tube that measures stagnation pressure in the middle of the stream while the hydrant is flowing. First, a static pressure gauge is attached to the test hydrant and the static water pressure is measured at the test hydrant. Second, the flow hydrant opened to allow water to flow ...
The water available is often determined by means of a water flow test, in which one or more fire hydrants are opened and the water pressures and flowrate are measured. Some municipal water jurisdictions may provide an estimate of available water supplies based on hydraulic models.
Some fire hydrants in Pacific Palisades ran dry overnight Tuesday due to "extreme demand" and low water pressure, Los Angeles officials said. The Palisades Fire, which was first reported at 10:30 ...
The user (most likely a fire department) attaches a hose to the fire hydrant, then opens a valve on the hydrant to provide a powerful flow of water, on the order of 350 kilopascals (51 psi); this pressure varies according to region and depends on various factors (including the size and location of the attached water main).
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
Why did dozens of fire hydrants go dry as firefighters rushed to combat flames from spreading in the Los Angeles area? National investigative correspondent Patrick Terpstra explains.
In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.