Ads
related to: triangle inequalities examples with answerskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
For example, the fact that any convergent sequence in a metric space is a Cauchy sequence is a direct consequence of the triangle inequality, because if we choose any x n and x m such that d(x n, x) < ε/2 and d(x m, x) < ε/2, where ε > 0 is given and arbitrary (as in the definition of a limit in a metric space), then by the triangle ...
Pages in category "Triangle inequalities" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. *
Triangle inequality: If a, b, and c are the lengths of the sides of a triangle then the triangle inequality states that +, with equality only in the degenerate case of a triangle with zero area. In Euclidean geometry and some other geometries, the triangle inequality is a theorem about vectors and vector lengths :
Rewriting the inequality above allows for a more concrete geometric interpretation, which in turn provides an immediate proof. [1]+ +. Now the summands on the left side are the areas of equilateral triangles erected over the sides of the original triangle and hence the inequation states that the sum of areas of the equilateral triangles is always greater than or equal to threefold the area of ...
This implies triangle inequality: [5] the symmetric difference of A and C is contained in the union of the symmetric difference of A and B and that of B and C. Intersection distributes over symmetric difference: = (),
The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
Ads
related to: triangle inequalities examples with answerskutasoftware.com has been visited by 10K+ users in the past month