Search results
Results from the WOW.Com Content Network
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 15 ] [ 16 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.
The need for flow conditioning, and hence, a fully developed velocity flow profile is driven from the original determination of Cd which utilized fully developed or 'reference profiles' as explained above. Conversely, the turbine meter operation is not rooted deeply in fundamentals of thermodynamics.
The dimensionless Reynolds number is an important parameter in the equations that describe whether fully developed flow conditions lead to laminar or turbulent flow. The Reynolds number is the ratio of the inertial force to the shearing force of the fluid: how fast the fluid is moving relative to how viscous it is, irrespective of the scale of ...
where Re is the Reynolds number, ρ is the fluid density, and v is the mean flow velocity, which is half the maximal flow velocity in the case of laminar flow. It proves more useful to define the Reynolds number in terms of the mean flow velocity because this quantity remains well defined even in the case of turbulent flow, whereas the maximal ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
Assume that the flow is steady, two-dimensional, and fully developed (i.e., the velocity profile does not change along the streamwise direction). [45] Note that this widely-used fully-developed assumption can be inadequate in some instances, such as some compressible, microchannel flows, in which case it can be supplanted by a locally fully ...
In fluid mechanics, inertance is a measure of the pressure difference in a fluid required to cause a unit change in the rate of change of volumetric flow-rate with time. The base SI units of inertance are kg m −4 or Pa s 2 m −3 and the usual symbol is I. The inertance of a tube is given by: = where