Search results
Results from the WOW.Com Content Network
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5.
Extension of exponentiation to positive real bases: Let b be a positive real number. The exponential function and the natural logarithm being the inverse each of the other, one has b = exp ( ln b ) . {\displaystyle b=\exp(\ln b).}
It is common to refer to the largest one as the maximal Lyapunov exponent (MLE), because it determines a notion of predictability for a dynamical system. A positive MLE is usually taken as an indication that the system is chaotic (provided some other conditions are met, e.g., phase space compactness). Note that an arbitrary initial separation ...
To compare numbers in scientific notation, say 5×10 4 and 2×10 5, compare the exponents first, in this case 5 > 4, so 2×10 5 > 5×10 4. If the exponents are equal, the mantissa (or coefficient) should be compared, thus 5×10 4 > 2×10 4 because 5 > 2.
The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.
In the centuries following the initial statement of the result and before its general proof, various proofs were devised for particular values of the exponent n. Several of these proofs are described below, including Fermat's proof in the case n = 4, which is an early example of the method of infinite descent.
This is generally used to denote powers of 10. Where n is positive, this indicates the number of zeros after the number, and where the n is negative, this indicates the number of decimal places before the number. As an example: 10 5 = 100,000 [1] 10 −5 = 0.00001 [2]
It is not known whether n q is rational for any positive integer n and positive non-integer rational q. [20] For example, it is not known whether the positive root of the equation 4 x = 2 is a rational number. [citation needed] It is not known whether e π or π e (defined using Kneser's extension) are rationals or not.