enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The trigonometric functions are periodic with common period , so for values of θ outside the interval (,], they take repeating values (see § Shifts and periodicity above). Angle sum and difference identities

  3. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ⁡ ( 0 ) = 0 {\displaystyle \sin(0)=0} .

  4. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  5. List of periodic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_periodic_functions

    All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: U n is the n th up/down number, B n is the n th Bernoulli number in Jacobi elliptic functions, = ()

  6. Periodic function - Wikipedia

    en.wikipedia.org/wiki/Periodic_function

    If () is a function with period , then (), where is a non-zero real number such that is within the domain of , is periodic with period . For example, f ( x ) = sin ⁡ ( x ) {\displaystyle f(x)=\sin(x)} has period 2 π {\displaystyle 2\pi } and, therefore, sin ⁡ ( 5 x ) {\displaystyle \sin(5x)} will have period 2 π 5 {\textstyle {\frac {2\pi ...

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: ⁡ + ⁡ = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of ⁡ + ⁡ = by ⁡; for the second, divide by ⁡.

  8. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  9. Trigonometric polynomial - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_polynomial

    A trigonometric polynomial can be considered a periodic function on the real line, with period some divisor of ⁠ ⁠, or as a function on the unit circle.. Trigonometric polynomials are dense in the space of continuous functions on the unit circle, with the uniform norm; [4] this is a special case of the Stone–Weierstrass theorem.