Search results
Results from the WOW.Com Content Network
Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory.The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.
Windows 95, Windows 98 and Windows Me use a similar file, and the settings for it are located under Control Panel → System → Performance tab → Virtual Memory. Windows automatically sets the size of the page file to start at 1.5× the size of physical memory, and expand up to 3× physical memory if necessary.
Virtual memory combines active RAM and inactive memory on DASD [a] to form a large range of contiguous addresses.. In computing, virtual memory, or virtual storage, [b] is a memory management technique that provides an "idealized abstraction of the storage resources that are actually available on a given machine" [3] which "creates the illusion to users of a very large (main) memory".
The Windows Task Manager utility for Windows XP and Server 2003, in its Performance tab, shows three counters related to commit charge: Total is the amount of pagefile-backed virtual address space in use, i.e., the current commit charge. This is composed of main memory (RAM) and disk (pagefiles).
It is the smallest unit of data for memory management in an operating system that uses virtual memory. Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. [1] [2] [3]
Paged allocation divides the computer's primary memory into fixed-size units called page frames, and the program's virtual address space into pages of the same size. The hardware memory management unit maps pages to frames. The physical memory can be allocated on a page basis while the address space appears contiguous.
An implementation of virtual memory on a system using segmentation without paging requires that entire segments be swapped back and forth between main memory and secondary storage. When a segment is swapped in, the operating system has to allocate enough contiguous free memory to hold the entire segment.
Region-based memory management works best when the number of regions is relatively small and each contains many objects; programs that contain many sparse regions will exhibit internal fragmentation, leading to wasted memory and a time overhead for region management. Again, in the presence of region inference this problem can be more difficult ...