enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum foam - Wikipedia

    en.wikipedia.org/wiki/Quantum_foam

    A graphic representation of Wheeler's calculations of what quantum reality may look like at the Planck length. Quantum foam (or spacetime foam, or spacetime bubble) is a theoretical quantum fluctuation of spacetime on very small scales due to quantum mechanics.

  3. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    The universe, as a whole, seems to have a nonzero positive baryon number density – that is, there is more matter than antimatter. Since it is assumed in cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter ...

  4. Antimatter - Wikipedia

    en.wikipedia.org/wiki/Antimatter

    Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...

  5. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The spacetime of the universe is, unlike the diagrams, four-dimensional. The flatness problem (also known as the oldness problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special ...

  6. Baryon asymmetry - Wikipedia

    en.wikipedia.org/wiki/Baryon_asymmetry

    In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.

  7. Universe - Wikipedia

    en.wikipedia.org/wiki/Universe

    The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.

  8. 10 things in the universe so huge they'll blow your mind - AOL

    www.aol.com/news/2015-10-08-10-biggest-things-in...

    4. IC1101 super galaxy -- As you might guess by the name, this galaxy is the largest discovered by man. More than 6 million light-years across, experts believe it was formed by the collision of ...

  9. Baryogenesis - Wikipedia

    en.wikipedia.org/wiki/Baryogenesis

    In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, the observation that only matter and not antimatter (antibaryons) is detected in universe other than in cosmic ray collisions.

  1. Related searches why is the universe so little antimatter known as the sun city grand homes for sale

    antimatter spacecraftlocal geometry of the universe