Search results
Results from the WOW.Com Content Network
In physical cosmology, baryogenesis (also known as baryosynthesis [1] [2]) is the physical process that is hypothesized to have taken place during the early universe to produce baryonic asymmetry, i.e. the imbalance of matter and antimatter (antibaryons) in the observed universe.
The universe, as a whole, seems to have a nonzero positive baryon number density – that is, there is more matter than antimatter. Since it is assumed in cosmology that the particles we see were created using the same physics we measure today, it would normally be expected that the overall baryon number should be zero, as matter and antimatter ...
What caused the Maunder Minimum and other grand minima, and how does the solar cycle recover from a minimum state? Coronal heating problem: Why is the Sun's corona so much hotter than the Sun's surface? Why is the magnetic reconnection effect many orders of magnitude faster than predicted by standard models? Space weather prediction:
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.
The spacetime of the universe is, unlike the diagrams, four-dimensional. The flatness problem (also known as the oldness problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special ...
There appears to be very little antimatter - and on Earth almost none. What's more, matter and antimatter are incompatible. If they touch, they blow up, a phenomenon called annihilation.
Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...