enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.

  3. Ice rules - Wikipedia

    en.wikipedia.org/wiki/Ice_rules

    The rules state each oxygen is covalently bonded to two hydrogen atoms, and that the oxygen atom in each water molecule forms two hydrogen bonds with other water molecules, so that there is precisely one hydrogen between each pair of oxygen atoms. [2]

  4. Ice - Wikipedia

    en.wikipedia.org/wiki/Ice

    During the melting process, the temperature remains constant at 0 °C (32 °F). While melting, any energy added breaks the hydrogen bonds between ice (water) molecules. Energy becomes available to increase the thermal energy (temperature) only after enough hydrogen bonds are broken that the ice can be considered liquid water.

  5. Phases of ice - Wikipedia

    en.wikipedia.org/wiki/Phases_of_ice

    Water molecules in ice I h are surrounded by four semi-randomly directed hydrogen bonds. Such arrangements should change to the more ordered arrangement of hydrogen bonds found in ice XI at low temperatures, so long as localized proton hopping is sufficiently enabled; a process that becomes easier with increasing pressure. [104]

  6. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In the gas phase, a single water molecule has an oxygen atom surrounded by two hydrogens and two lone pairs, and the H 2 O geometry is simply described as bent without considering the nonbonding lone pairs. [citation needed] However, in liquid water or in ice, the lone pairs form hydrogen bonds with neighboring water molecules. The most common ...

  7. Phase (matter) - Wikipedia

    en.wikipedia.org/wiki/Phase_(matter)

    Water is a well-known example of such a material. For example, water ice is ordinarily found in the hexagonal form ice I h, but can also exist as the cubic ice I c, the rhombohedral ice II, and many other forms. Polymorphism is the ability of a solid to exist in more than one crystal form. For pure chemical elements, polymorphism is known as ...

  8. Water - Wikipedia

    en.wikipedia.org/wiki/Water

    Model of hydrogen bonds (1) between molecules of water. Because of its polarity, a molecule of water in the liquid or solid state can form up to four hydrogen bonds with neighboring molecules. Hydrogen bonds are about ten times as strong as the Van der Waals force that attracts molecules to each other

  9. Clathrate hydrate - Wikipedia

    en.wikipedia.org/wiki/Clathrate_hydrate

    Methane clathrate block embedded in the sediment of hydrate ridge, off Oregon, USA. Clathrate hydrates, or gas hydrates, clathrates, or hydrates, are crystalline water-based solids physically resembling ice, in which small non-polar molecules (typically gases) or polar molecules with large hydrophobic moieties are trapped inside "cages" of hydrogen bonded, frozen water molecules.