Search results
Results from the WOW.Com Content Network
Artist's impression of a magnetosphere. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
Nutritional science (also nutrition science, sometimes short nutrition, dated trophology [1]) is the science that studies the physiological process of nutrition (primarily human nutrition), interpreting the nutrients and other substances in food in relation to maintenance, growth, reproduction, health and disease of an organism.
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
As with Earth's magnetosphere, the boundary separating the solar wind's plasma from that within Saturn's magnetosphere is called the magnetopause. [2] The magnetopause distance from the planet's center at the subsolar point [ note 1 ] varies widely from 16 to 27 R s (R s =60,330 km is the equatorial radius of Saturn).
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
The magnetosheath is the region of space between the magnetopause and the bow shock of a planet's magnetosphere.The regularly organized magnetic field generated by the planet becomes weak and irregular in the magnetosheath due to interaction with the incoming solar wind, and is incapable of fully deflecting the highly charged particles.
The Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created.
A simulation of a charged particle being deflected from the Earth by the magnetosphere. Thus in the "closed" model of the magnetosphere, the magnetopause boundary between the magnetosphere and the solar wind is outlined by field lines. Not much plasma can cross such a stiff boundary. [1]