Search results
Results from the WOW.Com Content Network
Many proteinogenic and non-proteinogenic amino acids have biological functions beyond being precursors to proteins and peptides.In humans, amino acids also have important roles in diverse biosynthetic pathways. Defenses against herbivores in plants sometimes employ amino acids. [95] Examples:
Arginine is the amino acid with the formula (H 2 N)(HN)CN(H)(CH 2) 3 CH(NH 2)CO 2 H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO 2 −) and both the amino and guanidino groups are protonated, resulting in a cation.
Phosphorylation of these three amino acids' moieties (including tyrosine) creates a negative charge on their ends, that is greater than the negative charge of the only negatively charged aspartic and glutamic acids. Phosphorylated proteins keep these same properties—which are useful for more reliable protein-protein interactions—by means of ...
Lysine (symbol Lys or K) [2] is an α-amino acid that is a precursor to many proteins.Lysine contains an α-amino group (which is in the protonated −NH + 3 form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group (which is in the deprotonated −COO − form when the lysine is dissolved in water at physiological pH), and a side chain (CH 2) 4 NH 2 (which ...
The distinction between essential and non-essential amino acids is somewhat unclear, as some amino acids can be produced from others. The sulfur-containing amino acids, methionine and homocysteine, can be converted into each other but neither can be synthesized de novo in humans. Likewise, cysteine can be made from homocysteine but cannot be ...
Phosphorylation introduces a charged and hydrophilic group in the side chain of amino acids, possibly changing a protein's structure by altering interactions with nearby amino acids. Some proteins such as p53 contain multiple phosphorylation sites, facilitating complex, multi-level regulation. Because of the ease with which proteins can be ...
In a hydrophilic environment such as cytosol, the hydrophobic amino acids will concentrate at the core of the protein, while the hydrophilic amino acids will be on the exterior. This is entropically favorable since water molecules can move much more freely around hydrophilic amino acids than hydrophobic amino acids.
Phospholipids [1] are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. [2]