Search results
Results from the WOW.Com Content Network
The E2F gene family is a group of transcription factors that target many genes that are ... Cell cycle checkpoints are control mechanisms in the eukaryotic cell cycle ...
p16 (also known as p16 INK4a, cyclin-dependent kinase inhibitor 2A, CDKN2A, multiple tumor suppressor 1 and numerous other synonyms), is a protein that slows cell division by slowing the progression of the cell cycle from the G1 phase to the S phase, thereby acting as a tumor suppressor. It is encoded by the CDKN2A gene.
Checkpoint kinase 1, commonly referred to as Chk1, is a serine/threonine-specific protein kinase that, in humans, is encoded by the CHEK1 gene. [5] [6] Chk1 coordinates the DNA damage response (DDR) and cell cycle checkpoint response. [7]
Steps of the cell cycle. The G 2-M checkpoint occurs between the G 2 and M phases. G2-M arrest. The G 2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired.
A mutation of this gene may lead to loss of control over the cell cycle leading to uncontrolled cellular proliferation. [8] [9] [10] Loss of p27 expression has been observed in metastatic canine mammary carcinomas. [11] [12] [13] Decreased TGF-beta signalling has been suggested to cause loss of p27 expression in this tumor type. [14]
The cell division cycle protein 20 homolog is an essential regulator of cell division that is encoded by the CDC20 gene [5] [6] in humans. To the best of current knowledge its most important function is to activate the anaphase promoting complex (APC/C), a large 11-13 subunit complex that initiates chromatid separation and entrance into anaphase.
Steps of the cell cycle. The restriction point occurs between the G 1 and S phases of interphase.. The restriction point (R), also known as the Start or G 1 /S checkpoint, is a cell cycle checkpoint in the G 1 phase of the animal cell cycle at which the cell becomes "committed" to the cell cycle, and after which extracellular signals are no longer required to stimulate proliferation. [1]
CHEK2 (Checkpoint kinase 2) is a tumor suppressor gene that encodes the protein CHK2, a serine-threonine kinase. CHK2 is involved in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Mutations to the CHEK2 gene have been linked to a wide range of cancers. [5]