Search results
Results from the WOW.Com Content Network
ANOVA gauge repeatability and reproducibility is a measurement systems analysis technique that uses an analysis of variance (ANOVA) random effects model to assess a measurement system. The evaluation of a measurement system is not limited to gauge but to all types of measuring instruments , test methods , and other measurement systems.
Proper measurement system analysis is critical for producing a consistent product in manufacturing and when left uncontrolled can result in a drift of key parameters and unusable final products. MSA is also an important element of Six Sigma methodology and of other quality management systems. MSA analyzes the collection of equipment, operations ...
The interesting issue with random fluctuations is the variance. The positive square root of the variance is defined to be the standard deviation, and it is a measure of the width of the PDF; there are other measures, but the standard deviation, symbolized by the Greek letter σ "sigma," is by far the most
In the empirical sciences, the so-called three-sigma rule of thumb (or 3 σ rule) expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean, and thus it is empirically useful to treat 99.7% probability as near certainty.
The repeatability coefficient is a precision measure which represents the value below which the absolute difference between two repeated test results may be expected to lie with a probability of 95%. [citation needed] The standard deviation under repeatability conditions is part of precision and accuracy. [citation needed]
This statistics -related article is a stub. You can help Wikipedia by expanding it.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In the long term, processes can shift or drift significantly (most control charts are only sensitive to changes of 1.5σ or greater in process output). If there was a 1.5 sigma shift 1.5σ off of target in the processes (see Six Sigma), it would then produce these relationships: [5]