Search results
Results from the WOW.Com Content Network
Kinetic friction, also known as dynamic friction or sliding friction, occurs when two objects are moving relative to each other and rub together (like a sled on the ground). The coefficient of kinetic friction is typically denoted as μ k , and is usually less than the coefficient of static friction for the same materials.
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.
This theory is exact for the situation of an infinite friction coefficient in which case the slip area vanishes, and is approximative for non-vanishing creepages. It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact.
The former is concerned with static friction (also known as "stiction" [3]) or "limiting friction", whilst the latter is dynamic friction, also called "sliding friction". For steel on steel, the coefficient of friction can be as high as 0.78, under laboratory conditions, but typically on railways it is between 0.35 and 0.5, [ 4 ] whilst under ...
This coefficient of rolling resistance is generally much smaller than the coefficient of sliding friction. [ 2 ] Any coasting wheeled vehicle will gradually slow down due to rolling resistance including that of the bearings, but a train car with steel wheels running on steel rails will roll farther than a bus of the same mass with rubber tires ...
It is an empirical fact for many materials that F = μN, where F is the frictional force for sliding friction, μ is the coefficient of friction, and N is the normal force. There isn't a simple derivation for sliding friction's independence from area.
Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).