Search results
Results from the WOW.Com Content Network
To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /
when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and; as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.
In contrast, it is worth noting that other confidence interval may have coverage levels that are lower than the nominal , i.e., the normal approximation (or "standard") interval, Wilson interval, [8] Agresti–Coull interval, [13] etc., with a nominal coverage of 95% may in fact cover less than 95%, [4] even for large sample sizes.
The confidence interval can be expressed in terms of probability with respect to a single theoretical (yet to be realized) sample: "There is a 95% probability that the 95% confidence interval calculated from a given future sample will cover the true value of the population parameter."
For a confidence level, there is a corresponding confidence interval about the mean , that is, the interval [, +] within which values of should fall with probability . Precise values of z γ {\displaystyle z_{\gamma }} are given by the quantile function of the normal distribution (which the 68–95–99.7 rule approximates).
Simple random sampling merely allows one to draw externally valid conclusions about the entire population based on the sample. The concept can be extended when the population is a geographic area. [4] In this case, area sampling frames are relevant. Conceptually, simple random sampling is the simplest of the probability sampling techniques.
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr(X = 0) = 0.05 and hence (1−p) n = .05 so n ln(1–p) = ln .05 ≈ −2
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.