enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  3. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. List of set classes - Wikipedia

    en.wikipedia.org/wiki/List_of_set_classes

    Set 3-1 has three possible versions: [0 1 1 1 2 T], [0 1 1 T E 1], and [0 T T 1 E 1], where the subscripts indicate adjacency intervals. The normal form is the smallest "slice of pie" (shaded) or most compact form, in this case: [0 1 1 1 2 T]. This is a list of set classes, by Forte number. [1]

  6. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    In set theory, the concept of cardinality is significantly developable without recourse to actually defining cardinal numbers as objects in the theory itself (this is in fact a viewpoint taken by Frege; Frege cardinals are basically equivalence classes on the entire universe of sets, by equinumerosity).

  7. Beth number - Wikipedia

    en.wikipedia.org/wiki/Beth_number

    so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.

  8. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of the natural numbers is ℵ 0 (read aleph-nought, aleph-zero, or aleph-null), the next larger cardinality of a well-ordered set is aleph-one ℵ 1, then ℵ 2 and so on. Continuing in this manner, it is possible to define a cardinal number ℵ α for every ordinal number α , as described below.

  9. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite: