Search results
Results from the WOW.Com Content Network
In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...
In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]
Magnetic-core memory (1954) is an application of Ampère's circuital law. Each core stores one bit of data. The original law of Ampère states that magnetic fields relate to electric current. Maxwell's addition states that magnetic fields also relate to changing electric fields, which Maxwell called displacement current. The integral form ...
The I symbol was used by André-Marie Ampère, after whom the unit of electric current is named, in formulating Ampère's force law (1820). [8] The notation travelled from France to Great Britain, where it became standard, although at least one journal did not change from using C to I until 1896. [9]
Ampère's force law describes the experimentally-derived fact that, for two thin, straight, stationary, parallel wires, a distance r apart, in each of which a current I flows, the force per unit length, F m /L, that one wire exerts upon the other in the vacuum of free space would be given by .
The ampere is named for French physicist and mathematician André-Marie Ampère (1775–1836), who studied electromagnetism and laid the foundation of electrodynamics.In recognition of Ampère's contributions to the creation of modern electrical science, an international convention, signed at the 1881 International Exposition of Electricity, established the ampere as a standard unit of ...
Maxwell added displacement current to the electric current term in Ampère's circuital law. In his 1865 paper A Dynamical Theory of the Electromagnetic Field Maxwell used this amended version of Ampère's circuital law to derive the electromagnetic wave equation. This derivation is now generally accepted as a historical landmark in physics by ...
The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).