enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The zeroth law is of importance in thermometry, because it implies the existence of temperature scales. In practice, C is a thermometer, and the zeroth law says that systems that are in thermodynamic equilibrium with each other have the same temperature. The law was actually the last of the laws to be formulated. First law of thermodynamics

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.

  5. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The above derivation uses the first and second laws of thermodynamics. The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for ...

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Note that the state equation, given by the first law of thermodynamics (i.e. conservation of energy), is written in the following form (assuming no mass transfer or radiation). This form is more general and particularly useful to recognize which property (e.g. c p or ρ {\displaystyle \rho } ) influences which term.

  8. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  9. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials. These relations are named for the nineteenth-century physicist James Clerk Maxwell .