enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boltzmann constant - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_constant

    Although Boltzmann first linked entropy and probability in 1877, the relation was never expressed with a specific constant until Max Planck first introduced k, and gave a more precise value for it (1.346 × 10 −23 J/K, about 2.5% lower than today's figure), in his derivation of the law of black-body radiation in 1900–1901. [11]

  3. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    This equation can be used to calculate the value of log K at a temperature, T 2, knowing the value at temperature T 1. The van 't Hoff equation also shows that, for an exothermic reaction (<), when temperature increases K decreases and when temperature decreases K increases, in accordance with Le Chatelier's principle.

  4. Determination of equilibrium constants - Wikipedia

    en.wikipedia.org/wiki/Determination_of...

    In general, solving these nonlinear equations presents a formidable challenge because of the huge range over which the free concentrations may vary. At the beginning, values for the free concentrations must be estimated. Then, these values are refined, usually by means of Newton–Raphson iterations. The logarithms of the free concentrations ...

  5. kT (energy) - Wikipedia

    en.wikipedia.org/wiki/KT_(energy)

    kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on ⁠ E ...

  6. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    This is exactly the value estimated by the formula stated earlier. EXAMPLE: Torque applied at different diameters , K v (rpm/V) {\displaystyle K_{\text{v (rpm/V)}}} = 3600 rpm/V ≈ 377 rad/s/V , K T {\displaystyle K_{\text{T}}} ≈ 0.00265 N.m/A (each calculatable if one is known) , V = 2 v, I a {\displaystyle I_{\text{a}}} = 2 A, P = 4 W ...

  7. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant R is defined as the Avogadro constant N A multiplied by the Boltzmann constant k (or k B): = = 6.022 140 76 × 10 23 mol −1 × 1.380 649 × 10 −23 J⋅K −1 = 8.314 462 618 153 24 J⋅K −1 ⋅mol −1. Since the 2019 revision of the SI, both N A and k are defined with exact numerical values when expressed in SI units. [2]

  8. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be computed by the multiplicative formula

  9. Binding constant - Wikipedia

    en.wikipedia.org/wiki/Binding_constant

    An often considered quantity is the dissociation constant K d ≡ ⁠ 1 / K a ⁠, which has the unit of concentration, despite the fact that strictly speaking, all association constants are unitless values. The inclusion of units arises from the simplification that such constants are calculated solely from concentrations, which is not the case.