Search results
Results from the WOW.Com Content Network
Anion gap can be classified as either high, normal or, in rare cases, low. Laboratory errors need to be ruled out whenever anion gap calculations lead to results that do not fit the clinical picture. Methods used to determine the concentrations of some of the ions used to calculate the anion gap may be susceptible to very specific errors.
High anion gap metabolic acidosis is typically caused by acid produced by the body. More rarely, it may be caused by ingesting methanol or overdosing on aspirin . [ 1 ] [ 2 ] The delta ratio is a formula that can be used to assess elevated anion gap metabolic acidosis and to evaluate whether mixed acid base disorder (metabolic acidosis) is present.
Hyperparathyroidism – can cause hyperchloremia and increase renal bicarbonate loss, which may result in a normal anion gap metabolic acidosis. Patients with hyperparathyroidism may have a lower than normal pH, slightly decreased PaCO2 due to respiratory compensation, a decreased bicarbonate level, and a normal anion gap. [3]
An elevated anion gap (i.e. > 16 mmol/L) indicates the presence of excess 'unmeasured' anions, such as lactic acid in anaerobic metabolism resulting from tissue hypoxia, glycolic and formic acid produced by the metabolism of toxic alcohols, ketoacids produced when acetyl-CoA undergoes ketogenesis rather than entering the tricarboxylic (Krebs ...
The anion gap (AG) without potassium is calculated first and if a metabolic acidosis is present, results in either a high anion gap metabolic acidosis (HAGMA) or a normal anion gap acidosis (NAGMA). A low anion gap is usually an oddity of measurement, rather than a clinical concern.
The urine anion gap is an 'artificial' and calculated measure that is representative of the unmeasured ions in urine. Usually the most important unmeasured ion in urine is NH 4 + since it is the most important form of acid excretion by the kidney. [ 5 ]
Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration [1] (see anion gap for a fuller explanation).
The serum anion gap is useful for determining whether a base deficit is caused by addition of acid or loss of bicarbonate. Base deficit with elevated anion gap indicates addition of acid (e.g., ketoacidosis). Base deficit with normal anion gap indicates loss of bicarbonate (e.g., diarrhea).