enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    The Boltzmann constant, and therefore entropy, have dimensions of energy divided by temperature, which has a unit of joules per kelvin (J⋅K −1) in the International System of Units (or kg⋅m 2 ⋅s −2 ⋅K −1 in terms of base units). The entropy of a substance is usually given as an intensive property — either entropy per unit mass ...

  3. Introduction to entropy - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_entropy

    Thermodynamics. In thermodynamics, entropy is a numerical quantity that shows that many physical processes can go in only one direction in time. For example, cream and coffee can be mixed together, but cannot be "unmixed"; a piece of wood can be burned, but cannot be "unburned". The word 'entropy' has entered popular usage to refer to a lack of ...

  4. Entropy (statistical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(statistical...

    An important result, known as Nernst's theorem or the third law of thermodynamics, states that the entropy of a system at zero absolute temperature is a well-defined constant. This is because a system at zero temperature exists in its lowest-energy state, or ground state , so that its entropy is determined by the degeneracy of the ground state.

  5. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way. Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental ...

  6. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    On the other hand, the molar specific heat at constant volume of a monatomic classical ideal gas, such as helium at room temperature, is given by C V = (3/2)R with R the molar ideal gas constant. But clearly a constant heat capacity does not satisfy Eq. . That is, a gas with a constant heat capacity all the way to absolute zero violates the ...

  7. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    Sackur–Tetrode equation. The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1] It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912. [4]

  8. Internal energy - Wikipedia

    en.wikipedia.org/wiki/Internal_energy

    The internal energy of a system depends on its entropy S, its volume V and its number of massive particles: U(S,V, {Nj}). It expresses the thermodynamics of a system in the energy representation. As a function of state, its arguments are exclusively extensive variables of state. Alongside the internal energy, the other cardinal function of ...

  9. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + ⁡ ⁡. In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...