Search results
Results from the WOW.Com Content Network
A perfect cuboid (also called a perfect Euler brick or perfect box) is an Euler brick whose space diagonal also has integer length. In other words, the following equation is added to the system of Diophantine equations defining an Euler brick:
A cuboid, a topological cube, has 8 vertices, 12 edges, and 6 quadrilateral faces, making it a type of hexahedron. In the context of meshes, a cuboid is often called a hexahedron, hex, or brick. [1] For the same cell amount, the accuracy of solutions in hexahedral meshes is the highest.
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
Diagram of an RTG used on the Cassini probe [1] Diagram of a stack of general-purpose heat source modules as used in RTGs Image of a plutonium RTG pellet glowing red hot.. GPHS-RTG or general-purpose heat source — radioisotope thermoelectric generator, is a specific design of the radioisotope thermoelectric generator (RTG) used on US space missions.
In computer vision, the term cuboid is used to describe a small spatiotemporal volume extracted for purposes of behavior recognition. [1] The cuboid is regarded as a basic geometric primitive type and is used to depict three-dimensional objects within a three dimensional representation of a flat, two dimensional image.
Padovan cuboid spiral. In mathematics the Padovan cuboid spiral is the spiral created by joining the diagonals of faces of successive cuboids added to a unit cube. The cuboids are added sequentially so that the resulting cuboid has dimensions that are successive Padovan numbers. [1] [2] [3] The first cuboid is 1x1x1.
Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces, a cuboid can be transformed into a cube. In math language a cuboid is convex polyhedron , whose polyhedral graph is the same as that of a cube .
Construction of Q 3 by connecting pairs of corresponding vertices in two copies of Q 2. The hypercube graph Q n may be constructed from the family of subsets of a set with n elements, by making a vertex for each possible subset and joining two vertices by an edge whenever the corresponding subsets differ in a single element.