Search results
Results from the WOW.Com Content Network
Ordinary trigonometry studies triangles in the Euclidean plane .There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.
In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points. [11] [12]
Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).
In Euclidean geometry, Kosnita's theorem is a property of certain circles associated with an arbitrary triangle. Let A B C {\displaystyle ABC} be an arbitrary triangle, O {\displaystyle O} its circumcenter and O a , O b , O c {\displaystyle O_{a},O_{b},O_{c}} are the circumcenters of three triangles O B C {\displaystyle OBC} , O C A ...
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,
Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.
In plane geometry, the Conway circle theorem states that when the sides meeting at each vertex of a triangle are extended by the length of the opposite side, the six endpoints of the three resulting line segments lie on a circle whose centre is the incentre of the triangle.
The Jacobi point is a generalization of the Fermat point, which is obtained by letting α = β = γ = 60° and ABC having no angle being greater or equal to 120°. If the three angles above are equal, then N lies on the rectangular hyperbola given in areal coordinates by